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FAST GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING 
FOR MATRICES WITH DISPLACEMENT STRUCTURE 

I. GOHBERG, T. KAILATH, AND V. OLSHEVSKY 

ABSTRACT. Fast 0(n2) implementation of Gaussian elimination with partial 
pivoting is designed for matrices possessing Cauchy-like displacement struc- 
ture. We show how Toeplitz-like, Toeplitz-plus-Hankel-like and Vandermonde- 
like matrices can be transformed into Cauchy-like matrices by using Discrete 
Fourier, Cosine or Sine Transform matrices. 

In particular this allows us to propose a new fast 0(n2) Toeplitz solver 
GKO, which incorporates partial pivoting. A large set of numerical examples 
showed that GKO demonstrated stable numerical behavior and can be recom- 
mended for solving linear systems, especially with nonsymmetric, indefinite and 
ill-conditioned positive definite Toeplitz matrices. It is also useful for block 
Toeplitz and mosaic Toeplitz (Toeplitz-block ) matrices. 

The algorithms proposed in this paper suggest an attractive alternative to 
look-ahead approaches, where one has to jump over ill-conditioned leading sub- 
matrices, which in the worst case requires 0(n3) operations. 

0. INTRODUCTION 

0.1. Displacement structure. Let matrices F, A E CnXn be given. Let R E 
c nxn be a matrix satisfying a Sylvester-type equation 

(0.1) V{F,A}(R) = F R-R A = GB, 

with some rectangular matrices G E Cnx,, B E Ca!xn, where the number a 
is small in comparison with n . The pair of matrices G, B in (0.1) is referred 
to as a {F, A}-generator of R and the smallest possible inner size a among 
all {F, A}-generators is called the {F, A}-displacement rank of R. The con- 
cept of displacement structure was first introduced in [21] using the Stein-type 
displacement operator V{F,}A(*) : C'n1xn Cnxn given by 

(0.2) V{F,A}(R) = R-F * R * A. 
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The variant (0.1) of displacement equation appeared later in [ 19]. The left-hand 
sides of (0.2) and (0.1) are often referred to as Toeplitz-like and Hankel-like 
displacement operators, respectively. The most general form of displacement 
structure, which clearly includes (0.1) and (0.2), was introduced in [24] using 
the operator 

(0.3) V{Q,A,F,A}(R) = Q * R .A* -F F R * A*. 

A standard Gaussian elimination scheme applied for triangular factorization 
of R would require O(n3) operations. At the same time, displacement struc- 
ture allows us to speed-up the triangular factorization of a matrix, or equiv- 
alently, Gaussian elimination. This speed-up is not unexpected, since all n2 
entries of a structured matrix are completely determined by a smaller number, 
2an, of the entries of its generator {G, B} in the right-hand side of (0.1). 
Moreover, translating the Gaussian elimination procedure into appropriate op- 
erations on the generator gives fast O(n2) algorithms. This was first (implicitly) 
done by Schur in [31] for Hermitian Toeplitz matrices and for certain gener- 
alizations thereof, which were called quasi-Toeplitz matrices in [27]. Then it 
was progressively extended to more general displacement structures by Kailath 
and his colleagues. The most general results were presented in [24] ( see also 
[25] ). The name generalized Schur algorithm was coined there for any fast 
implementation of Gaussian elimination exploiting displacement structure as 
in (0.3). 

0.2. Basic classes of structured matrices. The now well-known classes of 
Toeplitz-like matrices, Vandermonde-like, or Cauchy-like matrices, etc., can 
be introduced by using any form (0.1) or (0.2) of displacement equation (see, 
e.g., [21, 19, 6, 1, 13] ). For our purposes in this paper it will be more conve- 
nient to exploit the Sylvester-type displacement operator as in (0.1). Particular 
choices of matrices F and A in (0.1) lead to the definitions of basic classes of 
structured matrices, e.g., 

* Toeplitz-like [21]: F=Z A = Z-1, 
* Toeplitz-plus-Hankel-like [18, 9, 30]: F = Yoo, A = Yll 
* Cauchy-like [19]: F = diag(ci, .., , 

A = diag(d,.., dn); 
* Vandermonde-like [19, 13]: F = diag(L , x ) 

A =Z,; 
* Chebyshev-Vandermonde-like [22]: F = diag(xl, ...,n) 

A= Yy. 
Here, 

-0 0 0 X ~y 1 0 ... 0 
1 0 0* * * 10 . 0 1~~~~~~~~~I0 1 

(0.4) Z,g= O 1 ., Yy3=O 1 

* 1a 
0o... 0 10 0Lo... 0 1 cU. 
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i.e., Z4, is the lower shift 0-circulant matrix and ?; = Z 0 + ZJ + ye, e + 
Jee T. The reason for such designations may be seen from the easily verified 
fact that the shift-invariance property of a Toeplitz matrix T = [ti_11<] j<n 
implies that the {Z1, Z_ }-displacement rank of any Toeplitz matrix does not 
exceed 2. Therefore, a matrix with low {ZI, Z-1}-displacement rank is re- 
ferred to as a Toeplitz-like matrix. Similar justification for the other types of 
displacement structure will be given in the main text below. 

0.3. Transformation of structured matrices and pivoting. Let R E Cnxn satisfy 
the displacement equation (0.1), and let T1, T2 E CnXn be two invertible 
matrices. It is straightforward to see that the matrix R = TV l R * T2 satisfies 

V{,PA}(R)= FtRA-ARA GA, 

withF = T1-. F.T1, A'T71 = A.T2, G= T11 G, B=B.T2. Thisenables 
one to change the form of the matrices F and A in the displacement equation 
and therefore to transform a structured matrix from one class to another. Ideas 
of this kind were utilized earlier by various authors. In [28], the translation 
of a matrix from one structured class to another was discussed in the context 
of the extension of known structured algorithms to the other basic structured 
classes. In [ 13] this technique was utilized for transformation of Vandermonde- 
like matrices and Cauchy-like matrices into Toeplitz-like matrices; this allowed 
us to exploit the FFT for reducing the complexity of computing matrix-vector 
products for matrices from all basic structured classes. 

The judicious use of the transformation of Toeplitz-like matrices to gener- 
alized Cauchy matrices, i.e., matrices of the form 

(0.5) C= I - i (zi, Yi E Ca), 

was suggested in [17]. The point is that a generalized Cauchy matrix clearly 
retains the same form (0.5) after any permutation of columns and rows; this 
allows incorporating pivoting techniques into fast algorithms for generalized 
Cauchy matrices. 

Clearly, the matrix C possesses a Cauchy-like displacement structure, i.e., it 
satisfies (0.1) with F and A specified in ?0.2, and with G = [z1 Z2 ... 

B = [Yl Y2 ... YnI]. However, one must impose the restriction ci # dj 
(1 < i, j < n). It is a well-known fact that the inverse of a structured matrix 
also possesses a similar displacement structure (see, e.g., [21, 19, 6, 13, 25] ). 
In particular, the inverse of the generalized Cauchy matrix in (0.5) is a matrix 
of the same form, i.e., 

(0.6) C l = - [ ii w;,] 
di -j I<i, j<n 

with some xi, wi E Ca . A fast algorithm with partial pivoting was suggested by 
Heinig [ 17] for inversion and solving linear systems with generalized Cauchy ma- 
trices. This algorithm computes in O(an2) operations the vectors xi, wi E Ca 
in (0.6); then the linear system C - x = b is solved by computing the matrix- 
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vector product C- * b. Heinig's algorithm is of the Levinson type and it in- 
volves inner product calculations; it was shown in [ 17] that this disadvantage can 
be avoided by precomputing certain residuals. The algorithm for this purpose 
is of the Schur type; however the implicitly computed triangular factorization 
of C was not exploited in [17]. 

In [14, 15] a fast implementation of Gaussian elimination with partial pivot- 
ing ( fast GEPP ) was designed for Cauchy-like matrices in the context of the 
factorization problem for rational matrix functions. This algorithm computes 
in 0(an2) operations the triangular factorization of C; then the linear system 
is solved in 0(n2) operations via forward and back substitution [16]. More- 
over, this algorithm allows us to process not only matrices of the form (0.5) 
but also more general Cauchy-like matrices in which the two sets {c,, ..., cn} 
and {d,, ..., dn} are not disjoint. In the context of rational interpolation, 
the condition ci = dj means that the corresponding rational matrix function 
has a pole ci and zero dj at the same point. Such Cauchy-like matrices are 
encountered in many important applications [2]; see for example [15] for fast 
algorithms (with partial, symmetric or 2 x 2 block pivoting ) for matrix Nehari 
and Nehari-Takagi interpolation problems. 

0.4. Main results. In this paper we observe that partial pivoting can be in- 
corporated into fast algorithms not only for Cauchy-like matrices, but also for 
any class of matrices with displacement structure, which is defined by equation 
(0.1) with diagonal matrix F. Therefore, by incorporating partial pivoting into 
the generalized Schur algorithms we can design a fast 0(n2) implementation of 
GEPP for Cauchy-like, Vandermonde-like and Chebyshev-Vandermonde-like 
matrices. Our algorithm is not restricted to strongly regular matrices, and is 
valid for arbitrary invertible matrices from any of the above three structured 
classes. 

Furthermore, we propose a variety of formulas for transformation of 
Toeplitz-like, Toeplitz-plus-Hankel-like and Vandermonde-like matrices into 
Cauchy-like matrices; these formulas only require computing Fast Fourier, Co- 
sine or Sine transforms of the 2a columns of the generator matrices G and 
BT in (0.1), which is a fast and accurate operation and preserves the condi- 
tion number of a matrix. This allows us to solve linear systems with matrices 
from any structured class, applying the fast GEPP algorithm derived in ?2 for 
Cauchy-like matrices. 

In particular, it leads to two new 0(n2) Toeplitz solvers that incorporate 
partial pivoting. The first Toeplitz solver GKO, derived in ?3 below, transforms 
a Toeplitz matrix into a Cauchy-like matrix using FFTs. The second solver, 
developed in ?4 for the more general class of Toeplitz-plus-Hankel-like matrices, 
utilizes FCTs and FSTs. 

In ? 5 we present a large set of numerical examples, and compare the numerical 
behavior of the new Toeplitz solver GKO with the Levinson and classical Schur 
algorithms and with standard Gaussian elimination with complete pivoting. The 
data in ?5 suggest that GKO demonstrates stable behavior and moreover it 
remains reliable with "difficult" Toeplitz matrices, for which other structured 
algorithms propagate large errors. More comments on the conclusions from the 
numerical experiments are offered in the concluding ?6. 
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1. FAST GEPP AND SYLVESTER-TYPE DISPLACEMENT EQUATION 

1.1. Generator recursion. Applying Gaussian elimination to an arbitrary ma- 
trix RI is equivalent to recursive Schur complementation, as shown by the 
factorization 

(1.1) RI = [~11 R(')] [li /1 0]* R2] 

where R2 R _) - I llul is a Schur complement of the (1,1) entry d, in the 22 di 
matrix RI. 

It is a well-known fact in displacement structure theory that the Schur com- 
plement of a structured matrix remains in the same structured class. In the 
most general form, this statement can be found in [24], where it appeared for 
the case of a generalized displacement structure as in (0.3) with lower triangu- 
lar matrices Q, A, F, A. Moreover, a generalized Schur algorithm presented 
there provides a constructive proof of this result. Below we shall give a variant 
from [14, 15] of the generalized Schur algorithm for a matrix RI satisfying the 
Sylvester-type displacement equation. 

Lemma 1.1. Let the matrix RI = [di ul )] satisfy the Sylvester-type displacement 
'1 22 

equation 

(1.2) V{F1,A1}(RI)= K F] -RI, [a A2] GI GBI 

(G1 EC Cna, B1 e Caxn). 

If its (1, 1) entry d, is nonzero, then the Schur complement R2= R(*) -11 u1 

satisfies the Sylvester-type displacement equation 

(1.3) F2R2-R2A2 = G2B2, 

with 

(1.4) [2] =G- [ g1 [O B2] =BI-b1. [1 d, u]u 

where g, and b, are thefirst row of G1 and thefirst column of B1, respectively. 

Proof. Indeed, from (1.2) and the standard Schur complementation formula 

01 E-d1 01 [1 }u] 
I * 11 1 0 R2J [0 I] 

it follows that 

[fi 01ri R 0d 0] a, 
2* F2 L 0]R2 R2J [0 A2] 

Equag te ( I e obtin Gs ( 14 d I] 

Equating the (2,2) block entnies, one obtains ( 1.4). o 
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1.2. Partial pivoting. Applying partial pivoting requires a move of the maximum- 
magnitude entry in the first column of RI to the (1,1) position using row in- 
terchange, or equivalently, a multiplication with the corresponding permutation 
matrix PI, and then performing elimination: 

(1.5) PidR= [1 ][ R2] 

Now assume that RI satisfies (1.2) in which F1 is a diagonal matrix. In this 
case, after the row interchange, the matrix R1 = PI * RI satisfies in fact the same 
displacement equation (1.2), with the diagonal matrix F1 replaced by another 
diagonal matrix, F = P1 * F1 P [T, and with G1 replaced by G1 = PI * GI. In 
particular, this means that a row interchange does not destroy the Cauchy-like, 
Vandermonde-like and Chebyshev-Vandermonde-like displacement structures. 
Moreover, in this case, Gaussian elimination with partial pivoting can be trans- 
lated into the language of operations on the generator of a matrix as follows: 

Fast GEPP for a structured matrix 

* First recover from the generator the first column of R1 = R()1 
22 

* Next determine the position, say (k, 1), of the entry with maximum 
magnitude in the first column. Let P1 be a permutation of the 1st and 
the kth entries. Interchange the 1st and the kth diagonal entries of F1 
in (1.2); interchange the 1st and kth rows in the matrix G1 in (1.2). 

* Then recover from the generator the first row of P1 - RI .I Now one has 
the first column [ 111i ] of L and the first row [di ul] of U in the LU 
factorization of the permuted matrix, P1 - RI in (1.5). 

* Next compute by (1.4) a generator of the Schur complement R2 = R21) 22 

1llul of PI .R1 in (1.5). 
Proceeding recursively, one finally obtains the factorization R1 = P * L- U, 
where P = P1 - P2 ... P,_1 and Pk is the permutation used at the kth step of 
the recursion. 

2. FAST GEPP FOR CAUCHY-LIKE MATRICES 

Let tl, t2, ..., tn and s, 5s2, ..., Sn be 2n numbers, which for sim- 
plicity we assume to be distinct. In this section we consider the displacement 
operator of the form (0.1) with diagonal F and A : 

F = Dt = diag(tl, .t2 ,..,tn) ; A = Ds = diag(si, S2 ,..,Sn)- 

It can be easily checked that the {Dt, Ds}-displacement rank of an ordinary 
Cauchy matrix C(t, s) = [ Ij ]li,j<fn is equal to 1. Therefore, a matrix RI 
with low {Dt, Ds }-displacement rank will be referred to as a Cauchy-like matrix 

IThe computations for doing this depend on the form of the matrices F1 and A1 in 
displacement equation (1.2). In the next section these computations will be specified for Cauchy- 
like matrices. 
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[19]. More specifically, R is a Cauchy-like matrix if 

(2.1) 

V{D,,D5}(Rl) = Dt Rl-RI *Ds=[pT f * ** T]T*[y1 -Y2 Y * * In], 

with Vie Clx and /i E C'xl (i= 1,2,..., n), and a a small number. It 
is easy to see that 

(2.2) R- [(pYi * j 

Recall that for Cauchy-like matrices to implement the fast GEPP, one has only 
to show how to recover the first row and column of RI from its generator ( see 
?1 ). The formula (2.2) makes this easy to do, as is described in 

Algorithm 2.1. Fast GEPP for a Cauchy-like matrix 
Complexity 4an2 operations. 
Input A Cauchy-like matrix RI given by its generator ( see (2.1)). 
Output The factorization R1 = P - L * U of a permuted version of 

RI, where P is a permutation, the matrix L is a unit 
lower triangular matrix, and U is an upper triangular 
matrix. 

Initialization Set L = [lij]?j=l -, U = [uijl]7-1 to be zero matrices, and P 
to be the identity matrix. 

for k= l:n 
for j= k: n 

lJk = tj-Sk 

end 
find k < q < n so that lIqkl = maxk<j<n ljkl 
Ukk = lqk 

swap tk and tq 
swap Vk and (q 

swap kth and qth rows in L 
swap kth and qth rows in P 
for j= k + 1: n 

Ukj t k-sj 
tk-Si 

end 
lkk = 1 

for =k + 1: m 
1 = 1ik 

Ukk uki 

V/j = Vj -'k Ukk 

Vi 
= 

(j 
- 

tkljk 
end 

end 
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3. TRANSFORMATION OF TOEPLITZ-LIKE MATRICES 

TO CAUCHY-LIKE MATRICES 

In this section we consider a displacement operator of the form (0.1) with 

F = ZI, A = Z-1 , 

where Zk is the lower shift circulant matrix defined in (0.4). As was mentioned 
in the introduction, it is easy to check that any Toeplitz matrix T = [ti] <i,<n 
satisfies the equation 

(3.1) 

T T~~ t 

V{z,,z 1}(T) =Z T - T = [ 1 + o to t-l + tn-1 

i.e., the {ZI, Z-1}-displacement rank of a Toeplitz matrix does not exceed 
2. By analogy with (3.1), a matrix with low {ZI, Z 1}-displacement rank 
is referred to as a Toeplitz-like matrix. Observe that this definition slightly 
deviates from the one in [21], where the displacement operator of the form 
v{z, z0T (T) = T - Z0o T * ZJ was exploited. However, both definitions above 
describe in fact the same class of matrices, viz., those having a low displace- 
ment rank; the actual displacement rank will depend on the actual choice of 
displacement operator. 

Proposition 3.1. Let R E Cnxn be a Toeplitz-like matrix satisfying 

(3.2) V{Z1,Z1}(R) = Z1 * R-R * Z-1 = G B, 

where G E Cn x1 and B E C?xn. Then Y * R * Do - q* is a Cauchy-like 
matrix: 

V{D1 ,D-11}(, * R * Do-1* * 

=DI * (9--R -Do1 .s*9-(s D *) R *D' D-1 = G' B'. 

Here 9 = [en i(k1)(j-1))1I<k j<n stands for the (normalized) Discrete Fourier 
Transform matrix, 

2ici ___n-) I x (2n- 1)xic 

Di diag(l , en"i ....... e2(n - l) D- diag(en en eX ............(n-l 

ii (n -I)xic 

Do = diag(l, en, ...,e n 

and 

(3.3) G=ST.G, B* SDoB*. 
Proof. The assertions of the proposition follow immediately from the well- 
known factorizations 

(3.4) Zi=S'*.DI.Sr and Z-1=D lD1* D-1Sr Do. 

Substituting (3.4) into (3.2), and multiplying by F from the left and by D0-1. 
F* from the right, one obtains the assertions of the proposition. o 
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Proposition 3.1 offers a new 0(n2) algorithm for solving linear systems with 
Toeplitz-like matrices. More precisely, let R be a Toeplitz-like matrix, given 
by a {Z1, Z_ }-generator {G, B} . Just transform R into the Cauchy-like 
matrix, 9Y * R * D Y-1 * S* . This transformation is reduced by (3.3) to comput- 
ing the {D1, D_1 }-generator for the Cauchy-like matrix 7 * R - D- by 
applying 2a FFT's on 2a columns of the matrices G and B*. Then applying 
Algorithm 2.1 to this Cauchy-like matrix, one obtains the factorization 

R=* *P.L .U .5 Do, 

which allows an 0(n2) solution of linear systems with coefficient matrix R via 
two FFTs and forward and back substitution. 

In the next section another method for transforming a Toeplitz-like matrix 
into a Cauchy-like matrix is given. This method is valid for the more general 
class of Toeplitz-plus-Hankel-like matrices. 

4. TRANSFORMATION OF TOEPLITZ-PLUS-HANKEL-LIKE MATRICES TO 

CAUCHY-LIKE MATRICES 

In this section we consider a displacement operator of the form (0.1) with 

F = Yoo, A = Yl l, 

where Yy, , is defined as in (0.4). It is easy to see that the sum of any Toeplitz 
and Hankel matrices R = T + H = [tj_j]I<j,j< + [hi+j-21I<i,j< satisfies 

(4.1) rankV{yoo y1} (T + H) =Yoo (T + H) - (T + H) * Y1i < 4 

(cf. [18, 9, 30] ). Indeed, let R = T+H = [rij]u<i, <n and A = V{Y00, y,}(R) = 

[aij]<i, j<n . Note that the matrix Y1,, is essentially a combination of lower 
and upper shifts. Therefore, for 2 < i, i < n - 1 we have ai,j = ri1,j + 
ri+I j - ri j- I - ri, j+I . It is easy to see that the latter expression is zero for both 
the Toeplitz and Hankel components of the matrix R. From this it follows that 
only nonzero entries of A = V{y. , y1 ,} (T + H) can appear in its first and last 
rows and its first and last columns, and (4.1) follows. Thus the {Yoo, Y11}- 
displacement rank of T + H does not exceed 4. By analogy with (4.1), we 
shall refer to any matrix R with low { Yoo, Y1 I}-displacement as a Toeplitz- 
plus-Hankel-like matrix. 

In what follows we shall use the fact that the matrices Y1,3 with y, a E 
{ 1, -1 } or y = d = 0, can be diagonalized by Fast Trigonometric Transform 
matrices. In particular, the following statement holds (see for example [5]). 

Lemma 4.1. Let Yy1 be defined as in (0.4). Then 

Yoo 5'*Ds 59, Y1 = FDDCYT, 

where 

( = [Xk(qjcos (2k- I)(1))] ?,j< = [ - . sin k{l]l?k,j?n 



1566 I. GOHBERG, T. KAILATH, AND V. OLSHEVSKY 

are (normalized) Discrete Cosine Transform-II and Discrete Sine Transform-I 
matrices, respectively (qi = , q2 = = qn = 1), and 

Dc =2 * diag (1, cos -, ..., cos ( )) 
__ nrN 

Ds 2 * diag os ,..., cos +) 
\n+ 1 n+ 1 

Lemma 4.1 immediately yields the following result, which allows us to trans- 
form a Toeplitz-plus-Hankel-like matrix to a Cauchy-like matrix. 

Proposition 4.2. Let R be a Toeplitz-plus-Hankel-like matrix satisfying 

(4.2) V{y00y, yl} (R) = Yoo * R-R * Y1 I = G B, 

where G E Cn " and B E Cxn . Then 5 * R * ' is a Cauchy-like matrix: 

V IDS, DC }(Y -R W) = Ds * (5 >R -W) - (5 aR W) DC = G' B. 

Here, as in Lemma 4.1, Y and ' standfor the Discrete Cosine-II and Sine-I 
Transform matrices, respectively, and 

(4.3) G = 5 a G, B T= T.BT 

Proposition 4.2 suggests the following 0(n2) algorithm for solving linear 
systems with a Toeplitz-plus-Hankel-like matrix R, given by its {Yoo, Yii }- 
generator { G, B}. One has to transform R into the Cauchy-like matrix 5". 
R * W. According to (4.3), this transformation can be obtained by computing 
the {Ds, Dc}-generator for the Cauchy-like matrix 5 * R * W, applying a 
FSTs to the columns of G and applying a inverse FCTs to the columns of 
BT. Then applying Algorithm 2.1 to the Cauchy-like matrix 5 * R * , one 
obtains the factorization 

R=5.P.L U.UFT 

which allows 0(n2) solution of a linear system with matrix R via FCT, FST, 
forward and back substitution. 

Finally, Proposition 4.2 also enables fast solution of linear systems with 
Toeplitz-like matrices. To show this, we remark that for an arbitrary matrix 
R, 

(4.4) rankV{y00, yX} (R) < 2 . rankV{z,?Z-}(R) + 4. 

Indeed, assume that 
rank(ZI *R -R I Z-1) =a; 

then 
rank(ZT * R - R . z11) = Z . 

By adding the two latter equalities, one obtains rankV{z +zT, z_ I+zT } (R) < 

2 a a. Finally, the matrix z4 + Z T is a rank-two perturbation of the matrix 
Y7, , and (4.4) follows. 

The equality (4.4) shows that Toeplitz-like matrices indeed belong to the 
more general class of Toeplitz-plus-Hankel-like matrices. Therefore, they 
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can be processed by the algorithm based on Proposition 4.2. However, the 
{Yoo, Y11}-displacement rank of a Toeplitz-like matrix can be twice as big as 
its {Z,, Z-i}-displacement rank (for example, for an ordinary Toeplitz ma- 
trix the above two displacement ranks are 4 and 2, respectively). Hence, the 
{D,, D_ }-displacement rank of the Cauchy-like matrix 9 * R * Do l * 9* ( see 
?3 ) will also be about twice as big as the {Ds, Dc}-displacement rank of the 
Cauchy-like matrix 5 * R * W. Hence, processing a Toeplitz-like matrix by the 
method of ?4 can be more expensive in comparison with the method suggested 
in ?3. However, this is not the case when R is a real matrix. In this situation, 
the new {Ds, Dc }-generator of 56 * R * F will also be real, and hence all fur- 
ther computations in Algorithm 2.1 will remain in the real domain. However, 
the new {D1, D_I }-generator of 7 * R * D - * * will generally be complex, 
which will reduce the advantage of the lower displacement rank. We shall study 
the numerical behavior of the methods of ??3 and 4 in ?6. For completeness, 
however, let us first describe how to transform Vandermonde-like matrices to 
Cauchy-like matrices. 

5. TRANSFORMATION OF VANDERMONDE-LIKE MATRICES TO 

CAUCHY-LIKE MATRICES 

In this section we consider a displacement operator of the form (0.1) with 

F = D iag(-,,..-, A==ZT 
x g(XI X2 Xn 

where xi are nonzero. It can be easily checked that the Vandermonde matrix 
V(x) = [xJ-l l<i,j<n satisfies the equation 

(5.1) 

V{D1 ,zT}(V(X)) = D I V(x)- V(x) ZT 

=[1 n-i 1 -xn-1]T. [1 0 ... 0], 

cf. [19, 13] ). By analogy with (5.1) we shall refer to any matrix R with 
low {D I, Z T} displacement rank as a Vandermonde-like matrix. Observe that 
although this definition slightly deviates from the one in [19], it describes in 
fact the same class of matrices. 

The next statement is the counterpart of Proposition 3.1 for Vandermonde- 
like matrices, and it is deduced with exactly the same arguments. 

Proposition 5.1. Let R be a Vandermonde-like matrix satisfying 

V{D1,ZT}(R) =Di *R-R ZT =G B, 

where G E Cn',, B E Cc, n. As in Proposition 3.1, let 7 stand for the 
normalized DFT matrix and D1 = diag(1 , en, ..., e n (2n-)). Then R n i i 
a Cauchy-like matrix: 

V{D1j,D, }(R **)=Di * (R .,*) *-(R * 9-*) * D1* = G * (B *S) 
x x 

This proposition suggests an efficient method for transforming a Vander- 
monde-like matrix into a Cauchy-like matrix. This shows that Algorithm 2.1 is 
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also useful for solving linear systems with Vandermonde-like coefficient matri- 
ces. 

6. NUMERICAL EXPERIMENTS WITH FAST TOEPLITZ SOLVERS 

We performed a large number of computer experiments with the algorithms 
developed in the present paper to investigate their behavior in floating-point 
arithmetic and to compare them with other available algorithms. In particular, 
we solved a linear system T * x = b for various choices of the Toeplitz 
matrix T and right-hand side b, using the following algorithms: 

(1) GECP 0(n3) Gaussian elimination with complete pivoting. 
(2) Levinson 0(n2) Levinson algorithm. 
(3) Schur 0(n2) Classical Schur algorithm for triangular factori- 

zation of T, and then back and forward sub- 
stitution. 

(4) GKO 0(n2) Transformation of T to a Cauchy-like matrix 
on the basis of Proposition 4.1 and then use 
of Algorithm 2.1. 

(5) TpH 0(n2) Transformation of T to a Cauchy-like matrix 
on the basis of Proposition 5.1 and then use 
of Algorithm 2.1. 

All the algorithms (1) - (5) were implemented using the C language on a SUN 
workstation. To estimate the condition number and Frobenius norm tITtIF of 
a matrix we used routines from LAPACK, and for computing Fast Transforms 
we used routines from FFTPACK. 

The data on the time required by each of the above algorithms are given in 
Table 1. The authors have to make a proviso that the test programs were not 
completely optimized for time performance. Nevertheless, these data provide 
an approximation for the real complexities of the five compared algorithms. 

TABLE 1. Time ( seconds ) 
n GECP Levinson Schur GKO TpH 
15 0.01 0.00 0.00 0.02 0.00 
20 0.02 0.00 0.00 0.02 0.01 
25 0.05 0.00 0.00 0.04 0.02 
30 0.08 0.00 0.00 0.05 0.02 
40 0.21 0.01 0.00 0.09 0.05 
50 0.57 0.01 0.01 0.14 0.06 
60 1.48 0.02 0.01 0.20 0.09 
70 2.36 0.02 0.02 0.27 0.16 
80 3.99 0.02 0.02 0.35 0.17 
90 5.88 0.04 0.03 0.43 0.25 
100 8.23 0.04 0.03 0.56 0.26 
110 11.15 0.05 0.04 0.66 0.30 
120 14.48 0.06 0.04 0.77 0.36 
130 18.96 0.07 0.05 0.94 0.45 
140 23.58 0.08 0.07 1.23 0.66 
150 28.61 0.09 0.06 1.25 0.61 
160 34.83 0.10 0.07 1.46 0.72 
170 43.76 0.11 0.08 1.64 0.84 
180 49.02 0.14 0.09 1.83 0.97 
190 56.82 0.14 0.10 2.04 1.00 
200 64.81 0.16 0.11 2.21 1.01 
210 74.64 0.18 0.12 2.44 1.29 
220 84.99 0.19 0.14 2.67 1.25 
230 96.94 0.21 0.15 2.90 1.36 
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The standard mode of computation was in single precision with unit round- 
off error u, = 2-23 : 1.19 x 10-7. The algorithms GECP and GKO were 
also implemented in double precision, for which unit round-off Ud 2-56 - 

1.4 x 10-17. For the solutions XdGECp and XdGKO computed by the double 
precision versions of GECP and GKO, we computed the relative error 

des -; IIXdGECP - XdGKOII 

lIXdGECPII 

If de-s was of the order of 1 0-k , we regarded the first k digits in the mantissa 
of XdGECP to be exact and relied on them when computing the relative error 

e-s = IlXdGECP - 

lIXdGECP II 

for the solution x computed in single precision for each algorithm (1) - (5). 
For each example we also computed the relative residual error as 

llTbll 

As is well known, the error in the computed solution x and the residual error 
are related by 

1 IIT * - bll < llx - kll <k2(T) T i* x-bii 
k2(T) llbll llxii - ilbll 

i.e., a small residual error implies an accurate solution for well-conditioned 
matrices, but not necessarily for ill-conditioned matrices. 

We solved linear systems using the above algorithms for different Toeplitz 
matrices and different right-hand sides b. In particular, for each Toeplitz 
matrix specified below we constructed b by accumulating the product b = 
Tn * [1 1 ... 1]T in double precision. This choice allows us to avoid the 
situation in which ill-conditioning of the matrix is reflected in the growth of 
the norm of a solution vector. We describe the results of several numerical 
experiments. 

6.1. Positive definite Toeplitz matrices. For positive definite Toeplitz matrices 
with positive reflection coefficients, Cybenko showed in [8] that the Levinson 
algorithm guarantees the same size of residual error as the stable Cholesky fac- 
torization. He pointed out that his proof does not extend to the case where 
there are negative reflection coefficients. 
Example 1. In [32] ( see also [4]) it was observed that the Levinson algorithm 
can produce residual errors that are larger by a factor of the order of 103 - 105 

than those of a general stable method ( Cholesky factorization ), when applied 
to the prolate matrix with w = I for which reflection coefficients alternate in 
sign; the prolate matrix is defined by 

Tn = [ti_j]1<n, where tk s 2w otherwise (0 < 0) < 2) 

Background on prolate matrices can be found in [32]. We mention here only 
that they possess remarkable spectral and conditioning properties. For small wc, 
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their eigenvalues are clustered around 0 and 1, which makes them extremely 
ill-conditioned. In fact, k2(Tn) p(fl1W)eY-, for some y and p(n, y), where 
k2(T) stands for the spectral condition number, k2(T) = 11TIj j 11T-I 1. The 
data in Table 2 confirm the conclusion of [32] that the Levinson algorithm can 
give poor results. However, it turns out, very interestingly, that the classical 
Schur algorithm and new Toeplitz solver GKO applied to the prolate matrix 
remain as accurate as the stable GECP algorithm. 

TABLE 2. Prolate matrix with w= 
GECP Levinson Schur GKO TpH 

n k2(T) IiTIIF llxiil lbil e-s e-r e-s e-r e-s e-r e-s e-r e-s e-r 
. 4e+2 le+0 2e+0 2e+0 7e-6 Se-8 3e-7 7e-8 3e-6 2e-8 le-S le-7 3e-S 2e-7 
10 2e+6 2e+0 3e+0 3e+0 9e-3 7e-8 3e-1 2e-6 2e-2 le-7 Se-2 le-7 8e-4 3e-7 
20 6e+13 3e+0 4e+0 4e+0 4e-1 6e-8 9e+1 Ile-4 1e+0 2e-7 2e+0 4e-7 9e-1 2e-6 
40 Se+16 4e+0 9e+I 6e+0 le+0 7e-7 8e+0 3e-4 1e+0 Se-7 2e+0 2e-6 Ie+0 6e-6 
60 le+17 Se+0 8e+1 8e+0 le+0 Ie-6 le+1 4e-4 3e+0 8e-7 le+0 7e-7 le+0 4e-6 
80 Se+17 6e+0 3e+2 9e+0 1e+0 7e-7 2e+1 Se-4 2e+0 2e-6 le+0 9e-7 le+0 2e-S 
100 2e+17 7e+0 le+2 1e+1 Ie+0 Se-7 2e+I 2e-3 9e+0 3e-6 Ie+0 Ie-6 Ie+0 Se-S 
120 2e+18 8e+0 8e+1 Ie+1 3e+0 3e-6 3e+2 7e-3 2e+1 9e-6 le+0 2e-6 2e+0 8e-S 

Example 2. It turned out that a prolate matrix is not an isolated example where 
the Levinson algorithm is less accurate than the other algorithms compared. In 
fact, it was typical for the cases where the reflection coefficients did not keep the 
same sign and the matrix was not well conditioned. Thus, another example is 
the Gaussian Toeplitz matrix Tn = [ti1]jl<n, where tk = ak2, 0 < a < 1, with 
a close to 1. Background on Gaussian Toeplitz matrices can be found in [29]. 
We mention here only that this positive definite matrix arises as a discretization 
of Gaussian convolution, and that 

1l+a 
k2T)>(I - a2)(l - a4) *.*.. a2(n- 1)) 

One can check that the reflection coefficients of Tn also alternate in sign. The 
data for a = 0.9 are given in Table 3 below. 

TABLE 3. Gaussian Toeplitz matrix with a = 0.9 
GECP Levinson Schur GKO TpH 

n k2(T) lITIIF l|xii libli e-s e-r e-s e-r e-s e-r e-s e-r e-s e-r 
S 6e+3 4e+0 2e+0 8e+0 8e-S Se-8 7e-6 7e-8 Se-S 6e-8 7e-S Ie-7 3e-4 2e-7 
10 le+6 6e+0 3e+0 le+ le-2 Se-8 3e-1 2e-6 Se-2 9e-8 2e-2 2e-7 le-3 2e-7 
20 2e+8 9e+0 4e+0 2e+1 4e-I le-7 2e+1 6e-S 4e-i Ie-7 le-i 2e-7 2e-1 2e-6 
40 3e+9 1e+1 6e+0 3e+I 9e-I 9e-8 6e+I 2e-4 1e+0 2e-7 4e+0 6e-7 Se+0 6e-6 
60 Se+9 2e+I 8e+0 4e+I 9e-1 le-7 7e+1 3e-4 Ie+0 3e-7 Se+0 9e-7 4e+0 4e-6 
80 6e+9 2e+I 9e+0 Se+1 Ie+0 le-7 8e+I 3e-4 1e+0 3e-7 e+1 2e-6 3e+0 2e-S 
100 6e+9 2e+I le+ Se+I 9e-I 2e-7 7e+I 3e-4 Ie+0 4e-7 2e+0 9e-7 1e+1 Se-S 
120 7e+9 2e+1 Ie+1 6e+I 9e-I le-7 7e+I 3e-4 1e+0 4e-7 2e+0 Ie-6 Se+l 8e-S 
140 7e+9 2e+1 Ie+1 6e+I 8e-1 2e-7 7e+I 3e-4 2e+0 4e-7 2e+I 2e-6 7e+0 Se-S 
160 7e+9 2e+1 Ie+1 7e+I 8e-1 2e-7 7e+I 3e-4 2e+0 4e-7 e+1 2e-6 2e+I 2e-S 

It is interesting that for a Gaussian Toeplitz matrix with a = 0.99, the 
Levinson algorithm failed for n > 24, i.e., it indicated the occurrence of sin- 
gular minors. At the same time, the data for the other algorithms are close to 
those given in Table 3. 
Example 3. For a given set of reflection coefficients, a Toeplitz matrix can be 
recovered easily by tracing the Levinson algorithm backwards. The results in 
Table 4, where the reflection coefficients are chosen to alternate in sign, show 
another example of the lack of numerical stability of the Levinson algorithm. 
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TABLE 4. A matrix with equal sign-alternating reflection coefficients 
pi = (-l)iO.3 

GECP Levinson Schur GKO TpH 
n k2(T) I TIIF llxll llbll e-s e-r e-s e-r e-s e-r e-s e-r e-s e-r 
S 7e+0 2e+0 2e+0 3e+0 3e-7 7e-8 8e-8 7e-8 3e-8 4e-8 5e-7 2e-7 3e-7 le-7 
10 9e+ I 4e+0 3e+0 4e+0 3e-6 6e-8 3e-6 2e-7 4e-7 9e-8 6e-7 2e-7 5e-7 4e-7 
20 3e+4 Se+0 4e+0 6e+O 7e-4 le-7 4e-4 2e-6 2e-5 le-7 2e-5 4e-7 le-4 2e-6 
40 5e+9 7e+0 6e+0 9e+0 8e-1 2e-7 2e+1 9e-4 le+l 5e-7 1e+0 8e-7 7e-I 6e-6 
60 le+15 9e+0 8e+0 1e+1 2e+0 3e-7 7e+I 3e-3 1e+1 8e-7 8e-1 9e-7 4e+0 Se-6 
80 3e+16 1e+1 2e+1 1e+1 2e+0 5e-7 4e+I 7e-3 le+1 Ie-6 1e+0 le-6 9e-1 2e-5 
100 5e+16 ie+l 2e+1 le+l 4e+0 le-6 8e+I 8e-3 2e+1 le-S 9e-1 le-6 9e-I Se-S 
120 3e+16 1e+1 4e+i Ie+1 2e+0 8e-7 1e+l 8e-3 7e+0 Se-6 1e+0 2e-6 1e+0 8e-S 
140 3e+16 le+1 2e+I 2e+1 le+1 3e-6 6e+I 9e-3 2e+2 8e-S 3e+0 2e-6 2e+0 Se-S 
160 Se+17 2e+I 3e+1 3e+1 5e+0 2e-6 8e+2 Ie-2 4e+2 3e-4 2e+0 8e-6 9e-1 le-5 

Example 4. Finally, we tested some cases where the reflection coefficients of a 
positive definite Toeplitz matrix all had the same sign. One such example with 
reflection coefficients pi = 0.1 is shown in Table 5. 

TABLE 5. Toeplitz matrix with equal-sign reflection coefficients pi = +0.1 
. GECP Levinson Schur GKO TpH 

n k2(T) 1lTIF lixii libil e-s e-r e-s e-r e-s e-r e-s e-r e-s e-r 
S 2e+0 2e+0 2e+0 3e+0 8e-8 6e-8 Se-8 3e-8 7e-8 Se-8 2e-7 Ie-7 3e-7 3e-7 
10 3e+0 3e+0 3e+0 7e+0 2e-7 7e-8 le-7 7e-8 Ie-7 7e-8 4e-7 le-7 Se-7 3e-7 
20 9e+0 Se+0 4e+0 2e+ I 2e-7 Se-8 3e-7 7e-8 2e-7 Se-8 3e-7 7e-8 4e-6 2e-6 
40 2e+2 9e+0 6e+0 Se+i Ie-6 Se-8 7e-7 6e-8 6e-6 9e-8 6e-7 7e-8 9e-S 6e-6 
60 6e+3 1e+1 8e+0 8e+ 1 8e-S Se-8 Se-S le-7 2e-4 8e-8 3e-S 4e-7 4e-4 4e-6 
80 3e+5 2e+I 9e+0 le+2 4e-4 Se-8 7e-4 Ie-7 2e-3 6e-8 4e-4 2e-7 le-i 2e-S 
100 le+7 2e+i Ie+i 2e+2 3e-2 8e-8 4e-I 4e-7 le-I 8e-8 3e-2 6e-7 7e+0 Se-S 
120 7e+8 2e+1 le+1 2e+2 2e+1 4e-7 4e+0 2e-6 3e-I le-7 le-I le-7 le+3 7e-4 
140 3e+10 3e+i Ie+i 3e+2 2e+0 Se-8 9e+I 8e-S 2e+0 7e-8 Ie+0 Ie-6 2e+2 Se-S 
160 2e+12 3e+I le+i 4e+2 3e+0 Ie-7 6e+2 Se-S 4e+0 Ie-7 Se-i 3e-7 1e+1 6e-6 
180 9e+13 3e+1 Ie+1 4e+2 Se+0 le-7 4e+4 Se-3 7e+0 8e-8 2e+0 2e-7 le+2 3e-S 
200 4e+15 4e+1 2e+1 Se+2 3e+0 Se-8 2e+5 6e-2 1e+1 2e-7 9e-1 3e-7 le+1 Se-S 
220 8e+16 4e+I 8e+I 6e+2 2e+0 2e-7 2e+4 Ie-2 Se+0 2e-7 Ie+0 4e-7 6e+0 le-S 
240 le+17 Se+I 2e+2 7e+2 Ie+0 le-7 4e+4 6e-I 2e+0 4e-7 1e+0 2e-6 2e+3 3e-4 

Observe that for this case the residual errors of the Levinson algorithm be- 
came large starting from n = 125, whereas all other algorithms demonstrated 
good backward stability. At first glance this occurrence contradicts the Cybenko 
result. But in fact, owing to error accumulation, the reflection coefficients, com- 
puted by the Levinson algorithm (and by the classical Schur algorithm) for 
n > 125 were no longer of the same sign, so that the Cybenko analysis is not 
applicable in this situation. Also note that the latter fact means that in numeri- 
cal computations one cannot rely on some property of a Toeplitz matrix which 
is theoretically predicted by a particular application; because of round-off in the 
computer representation of a matrix, as well as a result of further error accu- 
mulation, this property can be lost at some stage of the computation. We shall 
give another example of a problem of this kind below. 

The data in Tables 2 - 5 suggest that there is a subclass of positive definite 
Toeplitz matrices for which the numerical properties of the Levinson algorithm 
are worse than for the stable GECP method. At the same time observe that in 
all the above examples, the classical Schur algorithm behaves similarly to the 
stable GECP. This relates to recent results of [4], where backward stability of 
the classical Schur algorithm ( which is referred to as FACTOR there ) was 
claimed for the class of positive definite Toeplitz matrices. More precisely, it 
was asserted there that for a positive definite Toeplitz matrix T, the classical 
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Schur algorithm computes the factorization 

(6.1) T-= [tij]11<i,j<n - L T ii + AT with lIAThI = O(uton3), 

where u is the machine precision. In practice, we found the estimate in (6.1) 
to be pessimistic. Moreover, in all examples the size of the residual vector, 
computed via the classical Schur algorithm, did not depend on the size n of the 
positive definite Toeplitz matrix ( experiments in [4] led to the same observation 
for the closely related Bareiss algorithm). 
Example 5. We conclude this subsection with the following example, which 
reinforces a point made for the example in Table 5. 

TABLE 6. Another Toeplitz matrix with equal-sign reflection coefficients 
Pi = +0.5 

GECP Levinson Schur GKO TpH 
n k2(T) II TIIF llxi Ilbil e-s e-r e-s e-r e-s e-r e-s e-r e-s e-r 
S 2e+1 3e+0 2e+0 8e+0 0c+0 0e+0 0e+0 0e+0 0e+0 Oe+O 3e-7 le-7 le-6 2e-7 
10 2e+3 7e+0 3e+O 2e+1 Ile-S 9e-8 2e-15 Oe+O le-S 2e-8 2e-5 2e-7 le-5 2e-7 
20 7e+7 le+1 4e+0 6e+1 6e-1 3e-8 2e+0 7e-7 7e-1 4e-8 2e-2 2e-7 le+0 2e-6 
40 2e+17 3e+1 2e+1 2e+2 4e+0 le-7 5e+l le-4 le+1 6e-7 5e+O 4e-7 le+2 4e-6 
60 5e+18 4e+1 3e+2 3e+2 le+0 5e-7 2e+1 3e-4 9e-1 le-7 le+0 3e-7 5e+l 2e-5 
80 2e+18 5e+l 2e+4 5e+2 le+0 4e-7 2e+0 5e-4 le+0 7e-7 le+0 2e-6 le+0 3e-6 
100 2e+21 3e+4 3e+2 2e+4 3e+0 2e-6 4e+8 le+0 2e+6 le+O le+O 3e-6 le+0 5e-6 
120 5e+24 3e+8 le+4 le+8 le+O le-4 2e+13 le+O 4e+14 le+0 le+0 4e-6 le+O le-S 
140 4e+29 3e+13 3e+7 le+13 4e+0 2e-3 4e+19 le+0 le+20 le+0 le+0 le-6 le+O le-6 
150 le+33 2e+17 1e+7 le+17 le+2 3e-3 Inf Inf 3e+27 lce+O I e+O le-6 I e+O 3e-6. 

Observe that in Table 6 the size of the residual error for the classical Schur 
algorithm started to grow for n > 90. At first glance, this contradicts the result 
in (6.1). But in fact, owing to error accumulation, the reflection coefficients 
actually computed by the classical Schur ( and Levinson ) algorithm deviate 
from the given number +0.5. Moreover, starting from n > 90, they became 
greater than 1 in magnitude, i.e., the Toeplitz matrix turned out to be indefinite. 
Observe that the analysis in [4] assumes that the actually computed reflection 
coefficients are positive. Therefore, that analysis is valid only for a special 
subclass of positive definite Toeplitz matrices and is not applicable for this 
situation. In [3] it was shown that to guarantee that the reflection coefficients of 
a positive definite Toeplitz matrix, computed via the classical Schur algorithm, 
will remain less than 1 in magnitude, one has to require that u - k2(T) be less 
than some constant of the order of 0(n2). The conclusion is that if a Toeplitz 
matrix is ill-conditioned, then its Schur complements can lose their theoretically 
expected positive definiteness at some stage of the computation. As we shall see 
in the next subsection, the classical Schur algorithm loses accuracy in examples 
with indefinite Toeplitz matrices. However, the results in the next subsection 
show that the algorithm GKO continues to yield satisfactory performance also 
in these examples. 

6.2. Symmetric indefinite Toeplitz matrices. 
Example 6. In the next example we generated a Toeplitz matrix with random 
entries in the interval (-1, 1). This matrix is not positive definite and may 
have several ill-conditioned principal submatrices. The common approach to 
avoid error accumulation is to apply a look-ahead strategy, e.g., to skip over 
these singular or ill-conditioned submatrices using some in general unstructured 
algorithm. However, the complexity of such a look-ahead algorithm depends 
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on the number of "difficult" submatrices, and may become 0(n3) in the worst 
cases. The data in Table 7 show that the 0(n2) Algorithm GKO is a good 
alternative to the look-ahead strategy, and that it gives numerical results similar 
to those with the stable GECP algorithm. 

TABLE 7. Symmetric Toeplitz matrix with random entries in (-1, 1) 
GECP Levinson Schur GKO TpH 

n k2(T) 11 TIIF |lxll llbil e-s e-r e-s e-r e-s e-r e-s e-r e-s e-r 
S Se+ 2e+0 2e+0 4e+0 9e-7 Se-8 le-S Se-7 2e-S 3e-6 7e-7 4e-8 2e-6 2e-7 
10 3e+1 Se+0 3e+0 9e+0 3e-7 9e-8 le-4 2e-S 6e-4 8e-S 6e-7 9e-8 Se-7 2e-7 
20 4e+1 le+1 4e+0 le+1 4e-7 2e-7 4e-6 3e-6 Se-6 3e-6 Se-7 4e-7 Se-6 6e-7 
40 le+2 2e+1 6e+0 le+1 le-6 Se-7 2e-4 Se-S 3e-4 le-4 Se-6 le-6 le-S 6e-6 
60 3e+2 4e+1 8e+0 Se+ 4e-6 3e-7 7e-4 2e-4 4e-4 le-4 4e-6 7e-7 3e-S 4e-6 
80 4e+2 Se+l 9e+0 3e+1 7e-6 8e-7 Se-4 4e-S 7e-4 2e-4 le-4 7e-6 3e-6 le-6 
100 2e+3 Se+l le+1 4e+1 8e-6 7e-7 le+0 le-2 4e-3 3e-4 Se-S 2e-6 le-4 Se-S 
120 8e+1 7e+1 le+1 Se+ 2e-6 le-6 3e-4 2e-4 3e-4 le-4 3e-6 3e-6 8e-S 8e-S 
140 le+3 8e+1 le+1 le+2 Se-6 7e-7 le-3 le-4 Se-3 2e-4 2e-S 4e-7 4e-4 Se-S 
160 le+2 9e+1 le+1 9e+1 4e-6 le-6 le-3 3e-4 4e-4 2e-4 6e-6 2e-6 3e-S 3e-S 
180 2e+2 le+2 le+1 le+2 I e-S le-6 3e-2 le-2 le-2 Se-3 4e-6 le-6 le-4 4e-S 
200 3e+2 le+2 le+1 le+2 7e-6 8e-7 le-3 3e-4 6e-3 2e-3 4e-6 7e-7 2e-4 le-4 
220 le+2 le+2 le+1 3e+1 3e-6 4e-6 Se-4 6e-4 8e-4 le-3 4e-6 4e-6 9e-S 4e-S 
240 2e+2 le+2 2e+1 2e+2 Se-6 le-6 3e-4 le-4 2e-3 3e-4 2e-S 3e-6 4e-4 3e-4 

6.3. Nonsymmetric Toeplitz matrices. 
'Example 7. For the next example we generated a random nonsymmetric Toeplitz 
matrix with entries chosen randomly in the interval (-1, 1) . The data in Table 
8 shows also for this case that the accuracy of Algorithm GKO is close to that 
for GECP. 

TABLE 8. Nonsymmetric Toeplitz matrix with random entries in (-1, 1) 
GECP Levinson GKO TpH 

n k2(T) IITIIF llxll llbll e-s e-r e-s e-r e-s e-r e-s e-r 
S 9e+0 3e+0 2e+0 2e+0 I- e7 Se-8 le-6 4e-7 3e-7 2e-7 le-7 le-7 
10 Se+0 6e+0 3e+0 6e+0 7e-8 8e-8 7e-S 4e-S 3e-7 3e-7 Se-7 3e-7 
20 2e+1 le+1 4e+0 2e+1 Se-7 le-7 2e-S 4e-6 7e-7 2e-7 3e-6 2e-6 
40 2e+2 2e+1 6e+0 3e+1 6e-6 3e-7 2e-3 4e-4 Ie-S 7e-7 2e-S 4e-6 
60 Se+l 3e+1 8e+0 Se+ le-6 4e-7 9e-S 2e-S 3e-6 2e-7 Ie-S 4e-6 
80 3e+2 Se+l 9e+0 4e+1 2e-6 6e-7 le-3 9e-S 3e-6 Se-7 6e-S 4e-6 
100 le+2 6e+1 le+1 3e+1 le-6 8e-7 8e-S Se-S 8e-6 4e-6 Se-S 9e-6 
120 9e+1 7e+1 le+1 Se+ 2e-6 8e-7 4e-4 3e-4 4e-S 6e-6 2e-4 4e-S 
140 3e+2 8e+l le+l le+2 Se-6 8e-7 Se-4 2e-4 4e-S 2e-6 le-4 Se-S 
160 Se+l le+2 le+l le+2 2e-6 9e-7 6e-3 3e-3 4e-6 2e-6 3e-S 3e-S 
180 le+2 le+2 le+l 7e+l 3e-6 le-6 Se-4 7e-S 3e-S 2e-6 7e-4 4e-S 
200 le+2 le+2 le+l 6e+l 2e-6 2e-6 9e-3 2e-3 6e-5 8e-6 8e-4 8e-S 
220 4e+2 le+2 le+l 7e+1 le-S 2e-6 8e-2 Ie-2 le-S 3e-6 2e-4 2e-S 
240 9e+2 le+2 2e+l le+2 3e-S le-6 2e-l 4e-2 2e-4 8e-6 3e-3 2e-4 

6.4. Mosaic Toeplitz (or Toeplitz-block ) matrices. We also applied the algo- 
rithms GECP, GKO and TpH for solving linear systems with mosaic Toeplitz 
[19] ( the designation Toeplitz-block was also used, see [7] ) matrices to test 
problems where the displacement rank of a matrix is greater than for ordinary 
Toeplitz matrices. In particular, we checked matrices of the form 

A B 
(6.2) T2n = C D , 

where A, B, C, D are themselves Toeplitz matrices. 
Example 8. In the following table one can find the data for the case where A 
and D are prolate matrices with w = 4, and the matrices B and C are equal 
to the identity matrix I. 
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TABLE 9. Mosaic-I 
GECP GKO TpH 

n k2(T) 11TIIF llxiil lbil e-s e-r e-s e-r e-s e-r 
10 9e+2 4e+O 3e+O 6e+O 2e-5 le-7 6e-6 2e-7 7e-6 4e-7 
20 4e+6 5e+0 4e+0 9e+0 4e-2 2e-7 le-I 2e-7 le-I 3e-6 
40 ie+i4 8e+0 6e+0 ie+i 5e+0 5e-7 2e+0 2e-6 4e+I 2e-5 
60 le+i6 9e+0 ie+i 2e+1 4e+2 le-6 3e+3 3e-5 7e+2 le-S 
80 3e+16 le+1 le+1 2e+1 le+3 3e-6 2e+2 4e-6 2e+4 Se-4 
100 6e+16 ie+1 2c+I 2e+I le+S Se-S 9e+2 4e-6 le+S le-4 
120 2e+17 ie+i 2e+I 2e+I le+3 2e-S le+2 2e-S 4e+2 9e-S 
140 2e+18 ie+1 6e+ I 2e+ I 7e+ I e-6 ie+1 9e-6 4e+ I e-4 
160 2e+17 2e+I 8e+I 3e+I 2e+2 3e-6 le+2 2e-5 Ie+2 3e-5 
180 2e+17 2e+ I 7e+ I 3e+ I le+3 le-5 7e+ I le-5 5e+3 2e-3 
200 2e+ 17 2e+ I 3e+ I 3e+ I 6e+2 7e-6 4e+3 2e-5 5e+3 4e-5 
220 6e+ 17 2e+ I 4e+ I 3e+ I 4e+2 6e-6 2e+2 8e-6 3e+3 3e-4 
240 3e+17 2e+I 4e+I 3e+I 3e+2 8e-6 4e+2 le-5 5e+4 9e-4 

Example 9. The next example is a well-conditioned matrix of the form (6.2), 
where A and D were prolate matrices with co = , and the matrices B and 4, 
C are 2 -I. 

TABLE 10. Mosaic-II 
GECP GKO TpH 

n _ (T) 1l ThF ljxjl llbll e-s e-r e-s e-r e-s e-r 
I0 3e+0 7e+0 3e+0 9e+0 Ie-7 8e-8 9e-7 5e-7 7e-7 5e-7 
20 3e+0 9e+0 4e+0 ie+i 4e-7 2e-7 Ie-6 8e-7 4e-6 3e-6 
40 3e+0 ie+i 6e+0 2e+I 6e-7 3e-7 2e-6 Ie-6 2e-5 le-5 
60 3e+0 2e+I 8e+0 2e+I 5e-7 3e-7 3e-6 Ie-6 2e-5 le-5 
80 3e+0 2e+ I 9e+0 3e+ I 6e-7 3e-7 4e-6 2e-6 5e-5 3e-5 
100 3e+0 2e+i Ile+ 3e+I 7e-7 5e-7 8e-6 3e-6 le-4 7e-5 
120 3e+0 2e+i Ie+i 3e+ I 8e-7 6e-7 9e-6 5e-6 2e-4 Ie-4 
140 3e+0 3e+i Ile+ 4e+I 8e-7 5e-7 6e-6 3e-6 2e-4 8e-5 
160 3e+0 3e+i Ile+ 4e+i Ie-6 7e-7 le-5 6e-6 6e-5 4e-5 
180 3e+0 3e+i Ile+ 4e+I le-6 7e-7 le-5 6e-6 Ie-4 5e-5 
200 3e+0 3e+i Ile+ 4e+I 9e-7 6e-7 le-5 6e-6 3e-4 Ie-4 
220 3e+0 3e+i Ile+ 4e+i Ie-6 5e-7 le-5 8e-6 2e-4 8e-5 
240 3e+0 3e+ I 2e+ I 5e+ I le-6 8e-7 2e-5 9e-6 8e-4 4e-4 

The data in Tables 9, 10 indicate that Algorithm GKO is reliable also for 
Toeplitz-like matrices. Its numerical behavior does not depend on the size 
of the matrix and is close to that of GECP. For well-conditioned Toeplitz-like 
matrices, GKO computes an accurate solution, and for ill-conditioned Toeplitz- 
like matrices, it produces a small residual error. 

7. CONCLUSIONS 

The following conclusions are made entirely on the basis of our experiments, 
only a small part of which was described in the previous section. 

GECP. There is no numerical superiority of fast 0(n2) Toeplitz solvers over 
the general-purpose algorithm 0(n3) GECP. This relates to the results of [10, 
11], where it was found that there is little difference between the structured 
condition number and condition number of a positive definite Toeplitz matrix. 

Levinson algorithm. For positive definite Toeplitz matrices with positive re- 
flection coefficients, the Levinson algorithm is as stable, in practice, as GECP 
and GKO, the results are consistent with those of Cybenko [8]. For positive def- 
inite Toeplitz matrices, whose reflection coefficients do not have the same sign, 
the Levinson algorithm may be less accurate and can produce residual errors 
larger than those of stable GECP. With symmetric indefinite and nonsymmet- 
ric Toeplitz matrices, the Levinson algorithm is less accurate than GECP and 
GKO. 
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Classical Schur algorithm. With positive definite Toeplitz matrices the clas- 
sical Schur algorithm has stable numerical behavior, close to that of GECP. 
With nonsymmetric and indefinite Toeplitz matrices, it is less accurate than 
GECP. Also with extremely ill-conditioned positive definite Toeplitz matrices, 
for which the actually computed reflection coefficients are not bounded by unity, 
the classical Schur algorithm is also worse than GECP and GKO. 

Algorithm TpH. The numerical behavior of Algorithm TpH applied to 
Toeplitz matrices is slightly worse in comparison with GECP and GKO. 

Algorithm GKO. Algorithm GKO showed stable numerical behavior, close to 
that of GECP. For well-conditioned Toeplitz matrices it computes an accurate 
solution, and for ill-conditioned Toeplitz matrices it produces small residual 
errors. It is the only one of the compared algorithms that was reliable for 
indefinite and nonsymmetric Toeplitz matrices. We are currently investigating 
the numerical properties of the transformations of Toeplitz-like matrices that 
preserve the symmetry of the original matrix, thus admitting the possibility of 
symmetric and Bunch-Kaufman pivoting, rather than just partial pivoting. 
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